

An AI-based 3D Bat Movement Tracking System at Wind Energy Facilities using Multi-Thermal Video Cameras

Sora Ryu NAWEA, Track: Digitalization, AI, Machine Learning Session: Digital Solutions for Efficient and Secure Wind Energy October 31, 2024

Growing Concerns of Increased Bat Mortalities

- Starting 2000s, the global increase of industrial wind-power facilities significantly contributed to bat mortality causes, but we don't know why!
- Why bat collision matters?
 - Bats are important for ecosystems, providing services like pest control and pollination.
 - Need to conserve bat population and endangered species
 - Accumulative collision can damage the wind turbine blade
- We need to understand the bat behavior and interactions with turbines to prevent collision!

O'Shea, T.J., Cryan, P.M., Hayman, D.T.S., Plowright, R.K. and Streicker, D.G. (2016), **Multiple mortality events in bats.** Mammal Review, 46: 175-190. https://doi.org/10.1111/mam.12064

Cost-Effective Strategy to Monitor Bat Activities

- Manual review from bat experts

 Thermal video cameras (1,304 hours)
- Need Cost-Effective Monitoring method which is:
 - Fast
 - Consistent
 - o Long-term
 - Easy-to-implement
 - Broadly-scalable

Behavior of bats at wind turbines, Paul. M. Cryan et al. Proceedings of the National Academy of Sciences Oct 2014, 111 (42) 15126-15131; DOI:10.1073/pnas.1406672111

Set Up Thermal Cameras at NREL Flatirons

- Each sensors are:
 - o 70.25 inches off the ground
 - o 37.5 inches apart
 - pointing up at the blade
 - Matched timestamps using GPS module

2D Bat Monitoring Methodology: Identifying bats

Only focus on large moving objects!

 Remove the noise from background, using additional image processing techniques – erosion, dilation.

• • 0	fgmask1	000	fgmask2
	*		
x=251, y=276) ~ ⊡0		(x=7, y=311) ~ L:0	

How to distinguish bat from others?

- Experimental set up
 - GPU setting with Skynet from the Bioenergy Science Technology Directorate at NREL
 - NVIDIA RTX3090 with Driver Version 470.57.0, CUDA, cuDNN, TensorFlow library

- Dataset
 - 870,033 images of unified 50x50 size
 - 4 classes bat (159,045), bird (192,045), insect (238,980), and non-biological object (279,963)
- ML model training with transfer learning
 - Backbone model option:
 - VGG, ResNet, Inception, Xception
 - Hyperparameter choices:

- # of freezing layers, # of classification layers with units, weight initialization, optimizer, learning rate, etc.

Achieved over 93% accuracy on average for classification

Example of successful detection of real bats

We can now track 2D Bat Flight Trajectory!

023-07-11 22:12:39	Х	Y V	Vidth	Height	Object ID	Analysis Date	Analysis Time O) bject Name (Current Frame	Probability
	747	469	53	53	1	5/20/24	29:03.6 b	at	346824	[6.7684746e
	722	460	74	55	1	5/20/24	29:03.8 b	at	346825	[1.5576882e
	696	456	58	35	1	5/20/24	29:04.2 b	at	346826	[1.8075279e
	684	434	52	47	1	5/20/24	29:04.5 b	at	346827	[1.8875493e
	656	428	60	38	1	5/20/24	29:04.8 b	at	346828	[7.4401581e
	644	423	60	35	1	5/20/24	29:05.1 b	at	346829	[4.6358593e
	620	400	59	47	1	5/20/24	29:05.4 b	at	346830	[1.7603651e
	602	391	58	40	1	5/20/24	29:05.6 b	at	346831	[1.7397796e [,]
	592	375	60	46	1	5/20/24	29:06.0 b	at	346832	[6.2573701e
	582	350	41	53	1	5/20/24	29:06.3 b	at	346833	[5.0453889e
	558	343	51	47	1	5/20/24	29:06.6 b	at	346834	[4.2875173e
	549	336	45	43	1	5/20/24	29:06.9 b	at	346835	[8.0620458e
	534	312	42	52	1	5/20/24	29:07.2 b	at	346836	[9.5796722e
	512	295	52	48	1	5/20/24	29:07.6 b	at	346837	[4.2756258e
	501	277	61	49	1	5/20/24	29:07.9 b	at	346838	[1.8054124e
	490	242	46	69	1	5/20/24	29:08.1 b	at	346839	[4.1875333e
	481	216	39	68	1	5/20/24	29:08.3 b	at	346840	[3.2587397e
	465	199	47	68	1	5/20/24	29:08.5 b	at	346841	[3.5182192e
	453	176	44	61	1	5/20/24	29:08.6 b	at	346842	[1.3892368e
	432	156	46	52	1	5/20/24	29:08.7 b	at	346843	[6.6471297e
	418	122	52	72	1	5/20/24	29:08.9 b	at	346844	[1.1993747e
	405	99	51	75	1	5/20/24	29:09.1 b	at	346845	[5.7287194e
	429	141	13	10	1	5/20/24	29:09.2 b	at	346846	[3.3714362e
	371	55	45	57	1	5/20/24	29:09.5 b	at	346847	[5.5922684e
	354	23	46	73	1	5/20/24	29:09.7 b	at	346848	[5.3531672e

How to expand it into 3D flight trajectories?

Adjusts both camera image planes to be parallel

Validation of 3D Bat Flight Trajectories

- Post-processing & Data QC Metrics
 - Cross-reference with SCADA high-freq data
 - Consider expected bat velocity range (12-25mph)
 - Remove false-positives with estimated wingspan and real object size
 - Compare rotating blade tip height range (4053cm 11430cm)

Bat 3D Flight Path Reconstruction

023-08-08 20:53:57

				the second s						
Date	Time	Object Type	ID	X (cm)	Y (cm)	Z (cm)	Distance (cm)	Speed (cm/s)	Speed (mph)	
8/8/23	20:52:38.767	bat	282	-102.039	-136.199	3147.524				
8/8/23	20:52:38.800	bat	282	-85.3062	-134.804	3146.019	16.8578438	510.843752	11.4272493	
8/8/23	20:52:38.867	bat	282	-60.9044	-127.832	3143.142	25.54073571	381.205011	8.52731323	
8/8/23	20:52:38.900	bat	282	-49.0522	-129.227	3139.079	12.6069129	382.027664	8.54571546	
8/8/23	20:52:38.967	bat	282	-22.5589	-127.832	3133.988	27.01396465	403.193502	9.01918178	/
8/8/23	20:52:39.000	bat	282	-14.8898	-132.713	3127.92	10.92925229	331.189463	7.4084973	
8/8/23	20:52:39.034	bat	282	-3.73471	-133.41	3120.779	13.26325241	390.095659	8.72619137	-
8/8/23	20:52:39.200	bat	282	38.0968	-162.692	3112.309	51.75971537	311.805514	6.97489071	
8/8/23	20:52:39.234	bat	282	44.37153	-171.058	3102.275	14.49273624	426.256948	9.53509637	-
8/8/23	20:52:39.300	bat	282	56.22379	-191.974	3090.508	26.7655779	405.539059	9.07165039	į.
8/8/23	20:52:39.367	bat	282	65.28728	-214.981	3077.138	28.1112332	419.570645	9.38552802	
8/8/23	20:52:39.400	bat	282	69.47043	-226.834	3062.617	19.20531758	581.979321	13.0185066	j.

Identified bats (left) → reconstructed track (right)

Conclusion

- Moved the research community and industry closer to fully automated wildlife behavioral analysis and real time reporting to help expedite the research
 vgg16_params_v1_best Confusion Matrix
- Cost effective thermal tracking system that
 - 1) is computationally inexpensive with the ability to run in real time on laptop
 - 2) can detect and classify animals moving in the field of view with the ability to distinguish between bats (93.2%), birds (94.4%), insects (83.5%) and non-biological objects (99.1%)
 - 3) can provide the 3D flight trajectories
 - 4) can be easily retrained to enhance performance on other types of applications
 - 5) is entirely open source, allowing it to be accessed, maintained, understood, adapted, and improved upon by a broad range of end users.
 (https://github.com/NREL/WEBAT)
- Future works
 - Expand the monitoring system to include other type of sensors
 - $\circ \quad \text{Bat behavioral studies} \\$
 - Understand the interaction of bats with wind turbines

Acknowledgments

NREL – NWTC

- Cris Hein
- John Yarbrough
- Sam Rooney
- Jeff Clerc
- Eliot Quon
- Michael Sinner
- Pietro Bortolotti
- Jason Roadman
- Mark Iverson
- Syhoune Thao
- Jessica Schipper

USGS

- Paul Cryan
- Bethany Straw

Thank you!

Sora.Ryu@nrel.gov

NREL/PR-5000-92405

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Transforming ENERGY